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1 Departamento de Fı́sica Teórica, Universidade do Estado do Rio de Janeiro, Rua São Francisco
Xavier 524, Rio de Janeiro 20550-013, RJ, Brazil
2 Instituto de Fı́sica, Universidade Federal Fluminense, Av Litorânea S/N, Boa Viagem, Niterói,
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Abstract
In this paper, we study the stability of the space of asymptotic fermion states
in (2+1)D, when long range interparticle interactions are present. This is
done in the framework of bosonization, where the fermion propagator can be
represented in terms of a vortex correlator. In particular, we discuss possible
instabilities in the large distance behaviour of the induced action for the vortex
worldline.

PACS numbers: 11.10.−z, 11.10.Lm, 11.15.Tk, 11.27.+d

1. Introduction

In two-dimensional spacetime, bosonization enables the identification of fermions with finite
energy solitons of a dual sine-Gordon model [1]. These solitons are topological objects
that interpolate between two different vacua φ(x → −∞) = 0 and φ(x → +∞) = 2π ;
for the antisoliton the behaviour is similar, just interchanging the vacua. Many important
consequences can be easily derived in the dual scenario. In particular, when a fermion
interaction coming from the minimal coupling with a Maxwell term is introduced (Schwinger
model) [2], a mass term φ2 is induced in the dual theory. As a consequence, a configuration
with nonzero topological charge (it tends to a nonzero value either at +∞ or −∞) cannot have
finite energy. In other words, a single soliton, or in fermionic language the single fermion,
disappears from the space of asymptotic states. This can be understood as due to the confining
nature of the Maxwell interaction in two dimensions, which implies a linear potential between
charges.

A natural question that arises is whether a possible destabilization of the fermionic
spectrum in higher dimensional systems can be studied in a similar manner. In reference
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[3], fermions in three dimensions have been associated with vortex configurations of the dual
bosonized gauge theory. Then, the above-mentioned programme can be rephrased in terms of
possible instabilities of the vortex modes as a consequence of interactions.

As we will see, in the three-dimensional case, interactions do not render in general the
vortex energy infrared divergent, and it is harder to display scenarios where the destabilization
of the vortices is observed. This situation is expected as we know that while in two dimensions
the fermion spectrum is easily destabilized by interactions, in three or more dimensions, the
quasiparticle picture is quite robust.

Then, we will search for possible destabilizations associated with the localization
properties of the dual model. This aim can be understood in the following manner. The
association of vortices in the bosonized theory and fermion states has been accomplished
by using a path integral definition of the vortex propagator, by creating and annihilating the
vortex at the position of an instanton anti-instanton pair in Euclidean spacetime [3]. These
Euclidean objects can be seen as a monopole–anti-monopole pair joined by a Dirac string
which becomes observable. When the theory presents a well-defined localization length,
as in the case of free fermions, the Dirac string can be seen as the vortex worldline and at
large distances the induced action is dominated by the length of the string plus Polyakov’s
action for spin one half particles. This leads to a pole in the vortex propagator, associated
with the single fermion state. Therefore, a possible breakdown of the above-mentioned large
distance behaviour, induced by the fermion interactions, could eliminate the single fermion
from the asymptotic space of states. We will show that, although the part of the induced action
proportional to the string length is robust, there is a set of interactions that could destabilize
the spin part.

The paper is organized as follows. In section 2 we describe a general model of fermions
coupled to U(1) gauge fields and discuss the dual theory in (1+1)D and (2+1)D, emphasizing
the role of topological excitations. In section 3 we analyse possible destabilizations of the
fermion propagator due to interactions. Finally, in section 4 we discuss our results.

2. Fermions coupled to U(1) gauge fields

Let us consider massive fermions coupled with a gauge field

KF [ψ] +
∫

dνx

[
AjF +

1

4
FµνP̂Fµν

]
, (2.1)

where KF is the action for free fermions, Fµν is the field strength tensor for a gauge field, and
we have included a possible nonlocal operator P̂ , associated with a kernel P(x − y),

[P̂F](x) =
∫

dνy P(x − y)F(y).

We also define the Fourier transform

P̃(k) =
∫

dνx eikxP(x). (2.2)

The usual Maxwell term is recovered by taking P̂ ≡ I , that is, P(x − y) = δ(ν)(x − y).
The integration over the gauge fields yields for the total fermion action

KF [ψ] + I [jF ], I [jF ] = 1

2

∫
dνx jF 1

(−∂2)P̂
jF , (2.3)

where ν is the spacetime dimension.
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2.1. (1+1)D massive fermions

In the simple case of massive fermions in (1+1)D, the model in equation (2.3) can be bosonized
according to [1],

KF [ψ] + I [jF ] ↔ KB[φ] + I [ε∂φ], (2.4)

KB[φ] =
∫

d2x

[
1

2
∂µφ∂µφ − µ cos βφ

]
, I [ε∂φ] = 1

2

∫
d2x φ

1

P̂
φ, (2.5)

where we have used the bosonization rule for the fermion current jF = ε∂φ, or in components,
jF
µ = εµν∂νφ. When the interaction induced by the gauge fields is absent, the model contains

the well-known solitons representing the fermions in the bosonized language. These solitons
are well-localized finite energy solutions with nonzero topological charge. When P̂ ≡ I ,
the mass term in equation (2.5) implies that configurations with nonzero topological charge
cannot have finite energy, as they are different from zero either at spatial +∞ or −∞. In other
words, the Maxwell interaction in (1+1)D eliminates the single soliton modes. This can be
understood as in this case the fermions experience a linear interaction.

An interesting question arises if we consider a general Lorentz invariant kernel P̂ = P(∂2)

in equation (2.5). Is there any situation in which the generally nonlocal φ2 term could allow
for finite energy solutions in the infrared regime? For this aim, we can consider a static field

φ(x) =
∫ +∞

−∞
dk φ̃(k) exp(−ikx), (2.6)

with nonzero topological charge, thus satisfying∫ +∞

−∞
dx ∂xφ(x) �= 0, (2.7)

this means φ̃(k) ∼ 1/k, for k → 0. On the other hand, using the Fourier transformed
variables, the nonlocal φ2 term reads∫

dk
1

P̃(k)
|φ̃(k)|2. (2.8)

Therefore, considering the class of operators having

P̂(k) = λ/kα, (2.9)

the energy of a nonzero topological configuration will be infrared finite whenever α > 1. The
static potential V (x) associated with this nonlocal operator,

P̂∂2
x V = δ(x), (2.10)

corresponds to V (x) ∝ |x|1−α . Then, the above-mentioned energy is infrared finite whenever
the nonlocal character of the Maxwell term drives the static potential into a nonconfining one.

2.2. Bosonization and the vortex propagator in (2+1)D

Studying two-dimensional interacting fermionic systems is more difficult than the one-
dimensional case, since in (2+1)D only few exact results are available (see for example
[4–6]). In this case, it is also well established that the correlation functions of U(1) fermionic
currents correspond to correlation functions of topological currents in the dual bosonized
theory [7, 8]. This feature has a universal character, generalizing equation (2.4). In other
words, we have the following formula [9, 10]:

KF [ψ] + I [jF ] ↔ KB[λ] + I [ε∂λ], (2.11)
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where KB is the corresponding bosonized action and the bosonizing field λ is a scalar field
φ in (1+1)D, and a gauge field Aµ in (2+1)D. Accordingly, ε∂λ has to be read as εµν∂νφ or
fµ = εµνρ∂νAρ , respectively.

When parity breaking fermions in (2+1)D are considered, and a large mass expansion is
performed, the dominant part of KB reduces to the Maxwell–Chern–Simons (MCS) model
[7, 8],

KB[A] ∼
∫

d3x

(
1

2m
f 2

µ +
i

2η
Aµf µ

)
, (2.12)

where m is proportional to the fermion mass and η is the Chern–Simons coefficient in the
fermion effective action. Using the universal mapping (2.11), the bosonized form of the total
fermion action in equation (2.3), including interactions, turns out to be

S[A] =
∫

d3x

(
1

2
fµÔfµ +

i

2η
Aµf µ

)
, (2.13)

Ô = 1

m
+

1

(−∂2)P̂
. (2.14)

In a similar manner to the (1+1)D case, where free fermions can be associated with soliton
configurations in the dual massive sine-Gordon model, in the case of parity breaking matter
in (2+1)D, they can be associated with vortices of the bosonized dual theory.

Following throughout the Hooft procedure [11], the vortex propagator in Euclidean
spacetime is obtained by path integrating over configurations where a vortex excitation is
created out of the vacuum at a spacetime point x1 and after an intermediate propagation
is annihilated at x2. Before x1 and after x2 the topological charge vanishes, while it is
nonvanishing in between due to the existence of the vortex. Therefore, suitable instanton–anti-
instanton singularities have to be introduced at x1 and x2 in order to match these inequivalent
topological configurations. In the present three-dimensional case these singularities can be
seen as a monopole–anti-monopole pair [12, 13] for the dual field strength fµ, located at x1

and x2, respectively. This pair is associated with a Dirac string γ running from x1 to x2, which
becomes observable in the MCS model.

Therefore, the two-point vortex correlation function is defined by

G(x1 − x2) =
∫

dγ

∫
DA e−S[A,J ] =

∫
dγ e−�γ , (2.15)

where S[A, J ] represents the coupling of the string and the MCS model and �γ is the induced
string action obtained by integrating over all gauge configurations in a fixed string background.
As discussed in [3], for the coupling

S[A, J ] =
∫

d3x

(
1

2m
(fµ + Jµ)Ô(fµ + Jµ) +

i

2η
AµFµ + iϑAµJµ

)
, (2.16)

Jµ(x) =
∫

γ

dyµ δ(3)(x − y), ηϑ2 = 2π, (2.17)

the effective action turns out to be

�γ = iπ
∫

d3x Jµ(ε∂)−1
µνJν +

1

2
(1 − ϑη)2

∫
d3x Jµ

Ô

1 − η2Ô2∂2
Jµ

+
i

2η
(1 − ϑη)2

∫
d3x Jµ

Ô2∂2

1 − η2Ô2∂2
(ε∂)−1

µνJν, (2.18)

where (ε∂)−1
µν is the Green function for the operator (ε∂)µν .
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For large mass free fermions, the leading terms of the induced action are [3]

�γ ∼ λmL + iπSγ , Sγ =
∫

d3x Jµ(ε∂)−1
µνJν, (2.19)

that is, Polyakov’s Bose–Fermi transmutation occurs [14, 15] and the vortex propagator turns
out to be that of a spin one-half fermionic excitation,∫

d3p
1

σµpµ + λm
eip(x1−x2), (2.20)

where σµ are the Pauli matrices; for more details, see [3] and references therein.

3. Analysis of the stability of vortex modes

Now, when interactions are turned on, we will first search for possible infrared divergences
of the vortex energy, similar to those occurring in the single soliton sector in the (1+1)D case.
The vortex energy can be read from equation (2.18) as the action per unit length for a straight
string running along the Euclidean time direction,

E = 1

2
(1 − ϑη)2

∫
d2k

(2π)2

Õ

1 + η2Õ2k2
, (3.1)

where the quantities in boldface correspond to the two-dimensional projection k → (0, k).
Let us consider the class of interactions defined by equation (2.9). It is easy to see that now, in
the (2+1)D case, there is no α that can render the integral in equation (3.1) infrared divergent.
This is clear if P is such that Õ tends to zero or a finite constant, when |k| → 0. In the case
where Õ diverges faster than |k|−1, the infrared behaviour of the integrand is proportional to
(Õk2)−1, which is infrared integrable in two-dimensional momentum space. Finally, when
Õ diverges like |k|−1 or slower, the integrand is proportional to Õ, which is also integrable.
Then, in (2+1)D there is no energy instability of the vortices. This is understandable as in
(2+1)D the quasiparticle picture is quite robust.

The next step is to study a possible destabilization in the localization properties of
the theory. Interactions could induce a breakdown of the large distance behaviour in
equation (2.19); in this case, the derivation of a propagator which at large distances behaves as
the free fermion propagator is not guaranteed. If this happens, instead of a dressed propagator
for spin one-half quasiparticles, we could be led to a different phase where the fermion
spectrum is destabilized.

For this aim, we will study the effect of interactions, defined by equation (2.1), on the
induced string action in equation (2.18), with Ô given in equation (2.14). Note that for
1 < α � 2 in equation (2.9), the associated potential decays faster than the Coulomb 1/R

potential, in particular, α = 2 corresponds to a contact potential. For α < 1, the potential
decay is slower than the Coulomb potential; α = 0 corresponds to a logarithmic potential,
α = −1 gives a linear confining potential, etc.

Equation (2.18) can also be written in terms of the associated kernels, for instance, the
integral in the second term can be written as

1

2

∫
d3x d3y Jµ(x)K(|x − y|2)Jµ(y) =

∫
dτ dτ ′ K(|x(τ) − x(τ ′)|2), (3.2)

K(|x − y|2) =
∫

d3k
Õ

1 + η2Õ2k2
e−ik(x−y)

= 4πm2

r

∫ ∞

0
dv

vA(v)

1 + η2v2A2(v)
sin(vr), (3.3)
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Figure 1. vortex profile with α = −1, λ = 2.

where x(τ) is a parametrization of γ and we have used that the theory is rotationally invariant
as the nonlocal operators depend on ∂2. We have also introduced the dimensionless variable,
r = m|x − y|, and defined

A(v) = 1 +
λmα−1

v2−α
. (3.4)

Considering the parametrization τ ∈ [0, L], where L is the length of the curve and

eµeµ = 1, eµ = dxµ

dτ
, (3.5)

and expanding the argument of the kernel in equation (3.2), we obtain

|x(τ) − x(τ ′)|2 = (τ − τ ′)2 − 2

4!
ėµėµ|τ ′(τ − τ ′)4 + · · · , (3.6)

where we have used that equation (3.5) implies ėµeµ = 0 and similar relations.
In general, when the interactions lead to a kernel in equation (3.2) containing a small

localization scale δ, in the sense that for |τ − τ ′| > δ the kernel is suppressed, we can
approximate the argument in equation (3.2) by the first term in equation (3.6), thus obtaining∫ L

0
dτ

∫ L

0
dτ ′K(|x(τ) − x(τ ′)|2)

≈
∫ L

0
dτ

∫ L

0
dτ ′K((τ − τ ′)2)

≈
∫ L

0
dτ

∫ τ+δ

τ−δ

dτ ′K((τ − τ ′)2), (3.7)

and changing variables τ ′ → τ ′ − τ ,∫ L

0
dτ

∫ L

0
dτ ′K(|x(τ) − x(τ ′)|2) ≈

∫ L

0
dτ

∫ δ

−δ

dτ ′K(τ ′2) = const L. (3.8)

In figure 1 we plot the kernel as a function of r for α = −1 and λ = 2. This kernel turns out
to be almost undistinguishable from that obtained in the free fermion model, where Ô = 1/m

and the kernel is of Yukawa-type with a localization length of the order of δ = 1/m. We have
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also verified that the kernel localization exists over the whole interval of αs, in spite of the
fact that the associated potentials are in general long ranged. Therefore, the term proportional
to the string length in the large distance induced string action Sγ in equation (2.19) is never
destabilized.

Finally, let us look for a possible destabilization of the spin one-half term. First, we note
that for free fermions the third term in equation (2.18) is irrelevant at large distances, when
compared with the first spin one-half term. However, if the interaction is such that Õ2k2 is
nonzero at k = 0, the coefficient for the spin one-half action will be changed at large distances
and the free fermion propagator could be destabilized. According to equations (2.9) and
(2.14), this happens when the associated potential is R−α, α � 1, ranging from a Coulomb up
to confining behaviour.

4. Discussions

In this paper we have compared the effect of interactions on the asymptotic fermion spectrum
in (1+1)D and (2+1)D. For this aim, we have used the identification of the fermionic excitations
with finite energy topological configurations in the dual bosonized theory.

As is well known, in the case of (1+1)D massive fermions, interactions associated with
linear potentials destabilize the asymptotic fermionic states in the sense that the energy of a
soliton configuration in the dual theory becomes infrared divergent, thus decoupling from the
spectrum. This also occurs for any interaction leading to confining interparticle potentials.

On the other hand, we have shown that in (2+1)D the vortex energy is always infrared finite.
This is another way of understanding that the free fermionic asymptotic spectrum in higher
dimensions is quite robust. However, we have seen that an interesting effect of interactions
on the spin degrees of the model takes place. This comes about from the representation of
the fermion propagator as a vortex correlator in the dual theory. We have verified that for
interactions associated with potentials R−α, α � 1, there is a term in the induced action for
the vortex worldline that competes with the spin one-half Polyakov term at large distances.
These potentials range from a Coulomb up to confining behaviour (α = −1 corresponds to a
linear interparticle potential). It would be interesting to investigate the lattice version of the
fermionic theory (2.3) to see the cases where this competition is realized as a destabilization
of the pole in the fermion propagator.
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